Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Transl Autoimmun ; 6: 100200, 2023.
Article in English | MEDLINE | ID: covidwho-2302457

ABSTRACT

Immune response to vaccines and pathogens remains unclear in patients with systemic lupus erythematosus (SLE). To investigate this, a single-center retrospective study was conducted with 47 SLE patients vaccinated against COVID-19, including 13 who subsequently developed an asymptomatic/mild disease. As compared to controls, post-vaccine response against Spike was reduced in SLE patients when considering both memory T-cells in a whole blood interferon gamma release assay (IGRA-S) and IgG anti-Spike antibody (Ab) responses. The SLE-associated defective IGRA-S response was associated with a serum albumin level below 40 g/L and with the use of glucocorticoids, while a defective IgG anti-Spike Ab response was associated with lower levels of anti-dsDNA and anti-SSA/Ro 52 kDa Abs. IGRA-S and IgG anti-Spike responses were independent from SLE activity and clinical phenotype, low complement, hypergammaglobulinemia, and lymphopenia. As compared to controls, SLE patients showed a rapid decay of anti-Spike T-cell memory and stable IgG anti-Spike Ab responses. In conclusion, both T cell and humoral anti-Spike responses were independently affected in our SLE patients cohort, which supports the exploration of both responses in the follow-up of SLE patients and especially in those receiving glucocorticoids.

2.
J Transl Autoimmun ; 6: 100199, 2023.
Article in English | MEDLINE | ID: covidwho-2278138

ABSTRACT

The first LBMR-Tim (Toulouse Referral Medical Laboratory of Immunology) symposium convened on December 16, 2022 in Toulouse, France to address challenging questions in systemic lupus erythematosus (SLE). Special focus was put on (i) the role played by genes, sex, TLR7, and platelets on SLE pathophysiology; (ii) autoantibodies, urinary proteins, and thrombocytopenia contribution at the time of diagnosis and during follow-up; (iii) neuropsychiatric involvement, vaccine response in the COVID-19 era, and lupus nephritis management at the clinical frontline; and (iv) therapeutic perspectives in patients with lupus nephritis and the unexpected adventure of the Lupuzor/P140 peptide. The multidisciplinary panel of experts further supports the concept that a global approach including basic sciences, translational research, clinical expertise, and therapeutic development have to be prioritized in order to better understand and then improve the management of this complex syndrome.

3.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2057779

ABSTRACT

Viral infections can promote cytokine storm and multiorgan failure in individuals with an underlying immunosuppression or specific genetic background. Hyperinflammatory states, including critical forms of COVID-19, are characterized by a remodeling of the lipid profile including a dramatic decrease of the serum levels of apolipoprotein-A-I (ApoA-I), a protein known for its capacity to reduce systemic and lung inflammation, modulate innate and adaptive immunity, and prevent endothelial dysfunction and blood coagulation. In this study, four immunocompromised patients with severe COVID-19 cytokine storm that progressed despite standard-of-care therapy [Omicron (n = 3) and Delta (n = 1) variants] received 2– 4 infusions (10 mg/kg) of CER-001, an ApoA-I-containing HDL mimetic. Injections were well-tolerated with no serious adverse events. Three patients treated while not on mechanical ventilation had early clinical and biological improvement (oxygen withdrawal and correction of hematological and inflammatory parameters, including serum levels of interleukin-8) and were discharged from the hospital 3–4 days after CER-001 infusions. In the fourth patient who received CER-001 after orotracheal intubation for acute respiratory distress syndrome, infusions were followed by transient respiratory improvement before secondary worsening related to ventilation-associated pneumonia. This pilot uncontrolled exploratory compassionate study provides initial safety and proof-of-concept data from patients with a COVID-19 cytokine storm receiving ApoA-I. Further randomized controlled trial evaluation is now required to ascertain whether ApoA-I has any beneficial effects on patients with a COVID-19 cytokine storm.

4.
J Autoimmun ; 133: 102912, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031419

ABSTRACT

Disease modifying therapies compromise immune response to SARS-Cov2 or its vaccine in patients with immune system diseases (ISD). Therefore, analysis of the humoral and cellular responses against Spike is of utmost importance to manage ISD patients. A single-center retrospective study was conducted to evaluate the impact of COVID-19 immunization in 87 ISD patients and 81 healthy controls. We performed a whole blood interferon gamma release assay using SARS-Cov2 Spike and Nucleocapsid recombinant proteins in order to evaluate T-cell memory response, and an IgG anti-Spike ELISA to evaluate humoral response. Cellular (26.4%) and humoral (44.8%) responses were negative against Spike in ISD patients following COVID-19 immunization. In univariate analysis, an anti-Spike T cell defective response was associated with the use of glucocorticoids (Odds ratio [OR] = 10.0; p < 10-4), serum albumin level ≤40 g/L (OR = 18.9; p < 10-4), age over 55 years old (OR = 3.9, p = 0.009) and ≤2 vaccine injections (OR = 4.9; p = 0.001). The impact of glucocorticoids persisted after adjustment for age and number of vaccine injections (OR = 8.38, p < 0.001). In contrast, the humoral response was impacted by the use of anti-CD20 mAb (OR = 24.8, p < 10-4), and an extended time since immunization (≥75 days; OR = 4.3, p = 0.002). Double defective cellular/humoral responses (6.9%) were typically encountered in glucocorticoids and/or anti-CD20 mAb treated ISD with a serum albumin level ≤40 g/L (OR = 17.5; p = 0.002). Glucocorticoid usage, B cell depleting therapies, and a low serum albumin level were the main factors associated with a non-response to COVID-19 immunization in ISD patients. These results need further confirmation in larger studies.

5.
J Transl Autoimmun ; 5: 100154, 2022.
Article in English | MEDLINE | ID: covidwho-1783601

ABSTRACT

The clinical and immunological spectrum of acute and post-active COVID-19 syndrome overlaps with criteria used to characterize autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Indeed, following SARS-Cov2 infection, the innate immune response is altered with an initial delayed production of interferon type I (IFN-I), while the NF-kappa B and inflammasome pathways are activated. In lung and digestive tissues, an alternative and extrafollicular immune response against SARS-Cov2 takes place with, consequently, an altered humoral and memory T cell response leading to breakdown of tolerance with the emergence of autoantibodies. However, the risk of developing severe COVID-19 among SLE and RA patients did not exceed the general population except in those having pre-existing neutralizing autoantibodies against IFN-I. Treatment discontinuation rather than COVID-19 infection or vaccination increases the risk of developing flares. Last but not least, a limited number of case reports of individuals having developed SLE or RA following COVID-19 infection/vaccination have been reported. Altogether, the SARS-Cov2 pandemic represents an unique opportunity to investigate the dangerous interplay between the immune response against infectious agents and autoimmunity, and to better understand the triggering role of infection as a risk factor in autoimmune and chronic inflammatory disease development.

6.
Clin Immunol ; 237: 108979, 2022 04.
Article in English | MEDLINE | ID: covidwho-1739616

ABSTRACT

We explored the performance of a whole blood interferon gamma release assay (IGRA) based on the stimulation of SARS-Cov2-specific T cells by purified recombinant proteins. Twenty volunteers vaccinated with BNT162b2 were selected first for T cell response evaluation using an in-house IGRA, a commercial IGRA, and ELISpot showing a S2 > S1 poly-epitopic response. Next, 64 vaccinated and 103 non-vaccinated individuals were tested for humoral and T cell response (IGRA-Spike/-nucleocapsid recombinant proteins). Following the second vaccine injection, humoral (100%) and IGRA-Spike T cell (95.3%) responses took place irrespective of sex, age, and vaccine type. The humoral response declined first, followed by IGRA-Spike T cell response after the second vaccine injection. Altogether, this study confirms the utility of the IGRA-Spike/-nucleocapsid assay to complement serology in COVID19 vaccinated individuals and those who have recovered from SARS-Cov2.


Subject(s)
COVID-19 , Interferon-gamma Release Tests , Antibodies, Viral , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Nucleocapsid , RNA, Viral , SARS-CoV-2 , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL